教授名录

教授名录

当前位置 :  首页 > 教师队伍 > 教授名录

陆云光

来源 : 杭州师范大学 数学学院     作者 : 学院     浏览量:3209     时间 : 2021-08-11

Photo(Lu)2020

陆云光


姓名:陆云光      

职称:教授  

邮箱:ylu2005@ustc.edu.cn  

主要学术兼职:

1.1997年元月起任中国《数学物理学报》中、英文版编委

2.2007年6月始为哥伦比亚国家科学院院士

3.国家自然科学基金重点项目通讯评审专家

4.Arch. Rat. Mech. Anal., SIAM, JDE等一流杂志审稿人

成果:

1.1994年获国家科委、科协、团中央授予的《首届全国杰出青年科技标兵》称号

2.1994年成果《补偿列紧理论与某些拟线性双曲守恒方程组》获中科院自然科学奖贰等奖,完成人:陆云光、林培雄、陈贵强

3.1995年获中科院青年科学家奖贰等奖,独立

4.论文《带小粘性的非齐项弹性方程组的存在性及渐近性》(英文)获湖北省第四届自然科学优秀学术论文壹等奖,独立

5论文Existence of Global Entropy Solutions to a Nonstrictly Hyperbolic System被评为安徽省第五届自然科学优秀学术论文一等奖,2007年1月,省级,独立

6.1993年起享受政府特殊津贴

7.2009年获江苏省五一劳动荣誉奖章

8.2011年起入选浙江省特聘专家

9.2011年获中国科学院"优秀研究生指导教师"奖(培养的博士获中国科学院优秀博士论文奖、国家优秀博士论文提名奖)

10.2012年获杭州市自然科学优秀学术成果奖一等奖(1/1)

11.2012年获浙江省自然科学学术奖一等奖(1/2)

12.2012年获浙江省高校自然科学成果奖二等奖(1/1)

2016年入选浙江省钱江特聘教授

14. 2017年成果《补偿列紧理论及相关双曲方程组的研究》获浙江省人民政府自然科学奖三等奖, 完成人:陆云光、胡燕波

主持项目:

11.一类非线性抛物方程组整体解的先验估计,(国家自然科学基金面上项目12071106),主持人,2021.01.01-2024.12.31, 50万元

10.一类非线性双曲方程组解的存在性和大时间性态,(省自然科学基金项目LY20A010023), 主持人,2020-2021

9. 浙江省重点学科“基础数学”, 主持人,250万, 2013-至今

8. 非线性双曲守恒律和补偿列紧理论(国家自然科学基金面上项目11271105),主持人,2013-2016, 68 万元

7. 补偿列紧理论在非线性双曲守恒律中的应用,(省自然科学基金

项目LY12A01030), 主持人,2012-2013, 6万元

6. 中科院百人计划项目《非线性双曲守恒律的研究》,200万元,主持人,2001-2010                  

5. 中科院院长特别基金《补偿列紧理论与松驰现象》,9万元,主持人,1997-1999

4. 国家自然科学青年基金项目《某些非线性双曲守恒律整体解的研究》(批准号:19201038), 1.4万元,主持人,1993-1995

3. 中科院留学择优支持基金《补偿列紧理论的应用》,2万元,主持人,1993

2. 国家“八·五”攀登项目《非线性科学》子课题《非线性发展方程》,5万元,参加人(主持人:丁夏畦院士),1991-1995

1. 中科院重大项目《数理科学》,20万元,主要参加人(主持人,丁夏畦院士), 1988-1990

论著目录

著作:

Yunguang Lu, “Hyperboilc Conservation Laws and the Compensated Compactness Method” Chapman & Hall/CRC Press,128, USA, 2003.

陆云光 和 陈志新,补偿列紧方法和双曲守恒律, 科学出版社, 2011年.

论文:

[93]. Yanbo Hu, C. Klingenberg and Y. Lu*, Zero Relaxation Time Limits to A Hydrodynamic Model of Two Carrier Types for Semiconductors, Mathematische Annalen, DOI 10.1007/s00208-020-02071-9, September, 2020.

[92]. C.F. Xue, C. Klingenberg, Y.Lu and J.J. Zhang, Zero Relaxation Time Limits to Isothermal Hydrodynamic Model for Semiconductor, Appl. Math. Letters (SCI 一区), 109(2020), 106528.

[91]. Existence of Global Solutions for Isentropic Gas Flow with Friction, Nonlinearity (SCI 2区), 33(2020), 3940-3969.

[90]. Global Existence and Stability to the Polytropic Gas Dynamics with an Outer Force, Yanbo Hu, Y. Lu(通迅), N. Tsuge, Appl. Math. Letters (SCI 一区), 95(2019), 35-40.

Global Solutions to System of Isentropic Gas Dynamics in a Divergent Nozzle with Friction, Q. Sun, Y. Lu(通迅) and C. Klingenberg, Acta Matematica Scientia (SCI 2区), 39B(2019), 1213-1218..

[88]. Global solutions to isothermal system in a divergent nozzle with friction, Appl. Math. Letters (SCI 一区), 84(2018), 176-180.

[87]. "Existence and nonexistence theorems of global weak solutions to degenerate quasilinear wave equations for the elasticity", Y. Lu and Y. Sugiyama, Appl. Math. Letters (SCI 一区), 84(2018), 118-123.

[86]. Global weak solutions for the chromatography system, Israel Journal of Mathematics (SCI 3区), 225(2018), No. 2, 721-741.

[85]. Global existence of solutions to system of polytropic gas dynamics with friction, Nonlinear Analysis, Real World Applications (SCI 2区), Volume 39, 2018, 418-423.

[84]. Global existence of weak solutions for n×n system of chromatography, Yunguang Lu, Elder, V. R, Jian Xie, Nonlinear Analysis, Real World Applications (SCI 当年一区), Volume 37, 2017, 309-316

[83]. Global Entropy Solutions of Cauchy Problem for the Le Roux System, Applied Mathematics Letters (SCI 当年 2 区), 60(2016), 61-66.

[82]. The Cauchy problem for Multiphase First-Contact Miscible Models with Viscous Fingering, Y. Lu, X.Z. Lu and C. Klingenberg, Nonlinear Analysis, Real World Applications (SCI 一区), 27(2016), 43-54.

[81]. Decay rate for degenerate convection diffusion equations in both one and several space dimensions, Y. Lu, C. Klingenberg, U. Koley and X.Z. Lu, Acta Matematica Scientia (SCI 3 区), 35B(2015), 281-302.

[80]. Global Solutions for a Simplified Shallow Elastic Fluids Model, Y. Lu, C. Klingenberg, L. Rendon and De-Yin Zheng, Abstract and Applied Analysis (SCI 当年 2 区), Vol. 2014, Article ID 920248, 5 pages.

[79]. Hyperbolic Approximation on System of Elasticity in Lagrangian Coordinates, J. Caicedo, C. Klingenberg, Y. Lu and L. Rendon, Natural Sciences, 6(2014), 477-486.

[78]. Global Existence of Solutions for a Nonstrictly Hyperbolic System, D. Zheng, Y. Lu, G. Song, and X. Lu, Abstract and Applied Analysis (SCI 当年 2 区), Vol. 2014, Article ID 691429, 7 pages.

[77]. A New Application of the Flux Approximation Method on Hyperbolic Conservation Systems, Y. Lu, I. Mantilla, L. Rendon, D. Zheng, Advances in Pure Mathematics, 2013, 3, 698-702.  

[76]. Existence of Global Weak Entropy Solutions to Some Nonstrictly Hyperbolic Systems, SIAM. Journal on Math. Anal. (SCI 2 区), Vol. 45(2013), No. 6, pp. 3592–3610.

[75]. Existence of global entropy solutions to general system of Keyfitz-Kranzer type, J. Funcl. Anal. (SCI 2 区), 264 (2013), 2457-2468 .

[74]. Global solutions to one-dimensional shallow water magnetohydrodynamic equations, Feng Gu, Y. Lu(通迅) and Qiong Zhang, J. Math. Anal. Appl. (SCI 当年 2 区),401(2013), 714-723.

[73]. Existence of global entropy solutions to the isentropic Euler equations with geometric effects, Y. Lu and F. Gu, Nonlinear Analysis, Real World Applications (SCI 1 区), 14(2013), 990-996.

[72]. EXISTENCE OF GLOBAL BOUNDED WEAK SOLUTIONS TO KEYFITZ-KRANZER SYSTEM,Yunguang LU & Feng Gu, Commun. Math. Sci. (SCI 2 区), 10(2012), No.4, 1133-1142.

[71]. Existence of Global Bounded Weak Solutions to a Symmetric System of Keyfitz-Kranzer Type, Nonlinear Analysis, Real World Applications (SCI 1 区), 13(2012),235-240.

[70].Existence of Global Bounded Weak Solutionsto a Non-Symmetric System of Keyfitz-Kranzer type, J. Funct. Anal.(SCI 2区), 261(2011), 2797-2815.

[69]. Global Existence of Solutions to Resonant System of Isentropic Gas Dynamics, Nonlinear Analysis, Real World Applications (SCI 1 区), 12(2011),2802-2810.

[68]. Resonance for the isothermal system of isentropic gas dynamics, Proc. A.M.S.(SCI 3 区),139(2011),2821-2826.

[67]. Existence of Global Solutions to Isentropic Gas Dynamics Equations with a Source Term, Y. Lu, Yuejun Peng and C. Klingenberg, Science China, 53(2010),1:115-124.

[66].Singular Limits for Inhomogeneous Equations of Elasticity, Y. Lu & C. Klingenberg, Acta Math. Sci., 29B(2009), No. 3, 645-649(吴文俊院士九十大寿专缉).

[65].Strong entropy for system of isentropic gas dynamics, Acta Math. Appl. Sinica, Vol. 24, 3(2008), 405-408(丁夏畦院士八十大寿专缉).

[64]. Nonlinearly Degenerate Wave Equation, REV.ACAD.COLOMB.CIENC.:Vol. XXXI, No. 119(2007), 275-283

[63].Some Results on General Ssystem of Isentropic Gas Dynamics,Differential Equations, 43(2007), No. 1, 130-138.

[62]. Nonstrictly Hyperbolic Systems with Stiff Relaxation Terms, J. Math. Anal. Appl., 324(2006), 1407-1416.

[61].Lower Bound Estimates for Viscosity Solutions to Isentropic Gas Dynamics and to Euler Equations, J. Math. Anal. Appl., 323(2006), 558-568.

[60].Global Weak Solution for a Symmetrically Hyperbolic System, Appl. Math. Letters, 19(2006),No.6, 522-526

[59]. Existence of Global Entropy Solutions to a Nonstrictly   Hyperbolic System, Arch. Rat. Mech. Anal., 178(2005),287-299.

[58]. Viscosity and Relaxation Approximations of Hyperbolic-Elliptic Mixed Type

System, Y. Lu and C. Klingenberg, Proceedings of A.M.S., 132(2004), No. 5, 1305-1309.

[57]. A Mixed Type System of Three Equations Modelling Reaction Flows, Y. Lu and C. Klingenberg, Proceedings of A.M.S., 131(2003), 11, 3511-3516.

[56]. The Global Lipchitz-Continuous Solutions of Isentropic Gas Dynamics, C.  

Klingenberg, Y. Lu and L. Rendon, Applicable Analysis, 82(2003), 1, 35-43.

[55]. $L1$-singular limit for the relaxation and viscosity approximations C.Klingenberg, Y. Lu and H.J. Zhao, Electron. J. Diff. Eqns., Vol. Vol. 2003, No. 23, 1-11.

[54]. Regularity of viscosity solutions of a degenerate parabolic equation, Y. Lu and L. Qian, Proceedings of A.M.S., 130(2002), 999-1004.

[53]. H\"older Estimates of Solutions on a Degenerate Diffusion Equation, Proceedings of A.M.S., 130(2002), 1339-1343.

[52]. Relaxation Limit for Hyperbolic Systems in Chromatography, Proceedings of A.M.S., 130(2002), 3579-3583.

[51]. H\"older Estimates of Solutions on the Equation $u_{t}= \Delta G(u)$, Y. Lu, I. Mantilla and L. Rendon, Applicable Analysis, 81(2002), 333-339.

[50]. Singular Limits of Stiff Relaxation and Dominant Diffusion for Nonlinear Systems, Y. Lu, J. Diff. Equs. 179(2002), No. 2, 687-713.

[49]. Relaxation Approximations and BV Estimates for Some Partial Differential Equations, F. Caicedo, Y. Lu and M. Sepulveda, Electron. J. Diff. Equs., Vol. 2002(2002), No. 19, pp. 1-10.

[48]. On Solutions to Nonlinear Reaction-Diffusion-Convection Equations with Degenerate Diffusion, Y.Lu & W. Jaeger, J. Diff. Equas., 170(2001), No. 1, 1-21.

[47]. Artificial and Physical Viscosity Solutions for a Hyperbolic Conservation System, Y. Lu and Mauricio Sepulveda, Applicable Analysis, 78(2001), 33-42.

[46]. Convergence of Approximated Solutions to Nonstrictly Hyperbolic System, Y. Lu, I. Mantilla and L. Rendon, Advanced Nonlinear Studies, 1(2001), 65-79.

[45].The relaxation limits for systems of Broadwell type, Y. Lu & C. Klingenberg, Differential and Integral Equations, Vol. 14(2001), No.1, 117-127.

[44].Holder Estimates of Solutions of Biological Population Equations, Appl. Math. Letters, 13(2000), 123-126.

[43].Holder Estimates of Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, Communcation in P.D.E., 24(1999), 5&6, 895-914.          

[42].The rate of convergence of the viscosity method for a nonlinear hyperbolic system, Y. G. Lu, P. K. Sweby and K. Chen, Nonlinear Analysis, 38(1999), 4: 435-445.

[41].The vacuum case in Diperna's paper, C. Klingenberg and Y. Lu, J. Math. Anal. Appl. 1225(1998),679-684.

[40].Existence of global solutions for viscoelastic systems, J. Math. Anal. Appl.. 218(1998), 175-182.

[39].Existence of solutions to hyperbolic conservation laws with a source, Y. Lu & C. Klingenberg, Commun. Math. Phys., 187(1997),327-340.

[38].Global regularity of solutions for general degenerate parabolic equations in 1-D, W Jaeger & Y. Lu, J. Diff. Equs., 140(1997), 365-377.

[37].Convergence of the viscosity method for a nonstrictly hyperbolic system,Y.Lu, Z.Wang, C.Zhu and H.Zhao, J. Sys. Sci. & Math. Scis., 16(1996), 1: 36-47.

[36].Existence of generalized solutions for some coupled systems of nonlinear hyperbolic equations, J. Sys. Sci. & Math. Scis., 16(1996),4: 125-135.

[35].Riemann problem on some hyperbolic PDEs (in Chinese), Y. Lu and Benjing Xuan, Acta Math. Sci., 16(1996), 187-194.

[34].Cauchy problem for hyperbolic conservation laws with a relaxation term, C. Klingenberg & Y.Lu, Proc. Roy. Soc. Edin. 126(1996), 821-828.

[33].The Cauchy problem for hyperbolic conservation laws with three equations, Y. Lu & C. Klingenberg, J. Math. Appl. Anal., 202(1996), 206-216.

[32].The Cauchy problem for reaction-convection equations in higher-dimensional spaces, Acta Math. Sci., 14(1994), 3:332-336

[31].Convergence of the viscosity method for some nonlinear hyperbolic systems, Proc. Roy. Soc. Edin. 124A(1994), 341-352

[30].Cauchy problem for a hyperbolic model, Nonlinear Analysis, TMA, 23(1994), 9: 1135-1144  

[29].Global Holder Continuous Solutions of Nonstrictly Hyperbolic Systems, J. Partial Diff. Equs., 7(1994),132-142

[28].Global Holder Continuous Solution of Isentropic Gas Dynamics, Proc. Roy. Soc. Edin. 123A(1993), 231-238

[27].Viscous solutions of quadratic conservation laws with umbilic points, Y. Lu, C.Zhu & H. Zhao, Nonlinear Analysis, TMA. 21(1993), 7, 485-499

[26].Global classical solution of the Cauchy problem for two-dimensional gas dynamics system, Acta Math. Sci., 13(1993),1: 65-73  

[25].Existence of generalized solutions to a hyperbolic model of combustion, Y.Lu & Jiaxin Hu, Acta Math. Sci., 13(1993), 2:195-201

[24].Existence and asymptotic behavior of solutions to inhomogeneous 2 by 2 hyperbolic quadratic conservation laws with small viscosity, Y.Lu & C.Zhu, J. Sys. Sci. & Math.Scis. 13(1993), 297-304

[23].Convergence of the viscosity method for a nonstrictly hyperbolic conservation laws, Comm. in Math. Phys., 150(1992), 59-64

[22].Cauchy problem for an extended model of combustion, Proc. Roy. Soc. Edin. 120A(1992), 349-360

[21].The interactions of elementary waves of nonstrictly hyperbolic system, Y. Lu & Jinghua Wang, J. Math. Anal. Appl., 166(1992),1:136-169

[20].Convergence of the viscosity method for a nonstrictly hyperbolic system, Acta Math. Sci., 12(1992), 2:230-239

[19].Existence and asymptotic behavior of solutions to inhomogeneous systems of gas dynamics with viscosity, Acta Math. Sci., 12(1992), 1:51-61

[18].Existence and asymptotic behavior of solutions to inhomogeneous equations of elasticity with little viscosity, Nonlinear Analysis, TMA. 16(1991) 3:197-207

[17].Existence and asymptotic behavior of solutions to 2 by 2 hyperbolic quadratic conservation laws with viscosity, Y.Lu & H.Zhao, Nonlinear Analysis, TMA. 17(1991), 2:169-180

[16].Convergence of the approximation solutions to isentropic gas dynamics,Guiqiang Chen & Yunguang Lu, Acta Math. Sci., 10(1990), 1:39-46

[15].Existence and asymptotic behavior of solutions to gas dynamics systems with diferent viscosity coefficients, Chin. Sci. Bull., 35(1990), 9:785-786

[14].The study on application way of the compensated compactness theory, Guiqiang Chen & Yunguang Lu, Chin. Sci. Bull., 34(1989),1:15-19

[13].Convergence of solutions to nonlinear dispersive equations without convexity conditions, Applicable Analysis, 31(1989),4:239-246

[12].Asymptotic behavior of solutions of initial problem to systems of gas dynamics with viscous term, Chin. Sci. Bull., 34(1989),1: 7-11

[11].Existence of solutions for inhomogeneous systems of gas dynamics, Guiqiang Chen & Y.Lu, Acta Math. Sci., 9(1989), 2: 121-130

[10].A study of approaches to applying the theory of compensated compactness, Guiqiang Chen and Y. Lu, Kexue-Tongbao (Chinese) ,33 (1988), no. 9, 641--644.

[09].Asymptotic behavior of solutions to the gas dynamics equations with a viscosity term, Yunguang Lu, Kexue-Tongbao (Chinese),33 (1988), no. 1, 4--7.

[08].The asymptotic behavior of solutions of initial value problem to system of gas dynamics with viscosity, Y. Lu & Guiliang Xie, Acta Math. Sci., 8(1988), 2: 185-198

[07].Existence and asymptotic behavior of solutions to systems of gas dynamics with a class of sources, Guiqiang Chen & Y.Lu, Acta Math.Sci., 8(1988),1:85-94

[06].Existence and asymptotic behavior of global solutions of the Cauchy problem for inhomogeneous systems of isentropic gas motion with viscosity, G. Wang, G. Xie and Y. Lu, J. Cent. China Norm. Univ., Nat. Sci. 22, No.2, 129-134 (1988).

[05].On the antiblowing-up and antiquenching problems for semilinear parabolic equations, J. Sun and Y. Lu, J. Shandong Univ., Nat. Sci.,22, No.2, 26-34 (1987).

[04]. Convergence of Viscosity Solutions to a Nonstrictly Hyperbolic System, in the book "Advances in Nonlinear Differential Equations and Related Areas", World Scientific(1998), PP. 250-266.

[03]. A study of the global weak solution for the isentropic equations of polytropic gas, A.Jeffrey & Y. Lu, AMS/IP Studies in Advanced Mathematics, Volume 3, 1997(261-270).  

[02]. Existence of solutions to resonant systems of conservation laws, C. Klingenberg & Y. Lu, Collection: Hyperbolic problems: theory, numerics, applications (Stony Brook, NY,1994),383--389 World Sci. Publishing, River Edge, NJ, 1996.

[01]. Cauchy problem for hyperbolic conservation laws with relaxation terms, C. Klingenberg & Y. Lu, Matematica Contemporanea, Vol.11, 1996(51-60).


联系我们

地址:浙江省杭州市余杭塘路2318号勤园23号楼 
电话:0571-28867633 邮编:311121
版权所有 © 2021 杭州师范大学数学学院 
公安备案号:33011002011919  浙ICP备11056902号-1