报告主题:Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme
报告人:安徽大学数学科学学院 吴然超
报告时间:2022年3月25号(周五2:30-3:30)
腾讯会议:761462921
密码:123456
摘要:A depletion-type reaction-diffusion Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme is introduced. Boundedness of positive solution of the parabolic system and constant steady state solutions of the model are exhibited. Stability of the corresponding positive constant steady state is explored.Some priori estimates, the properties of nonconstant steady states, non-existence and existence of the nonconstant steady state solution for the corresponding elliptic system are investigated by Leray-Schauder degree theory, respectively. Some existence conditions and some properties of the Hopf bifurcation and the steady state bifurcation are presented, respectively. It is showed that the temporal and spatial bifurcation structures will appear in the reaction-diffusion model.
报告人简介:吴然超,安徽大学教授,博士生导师。2006年毕业于南京大学数学系,获博士学位,现任安徽大学教务处副处长。美国《数学评论》评论员,IEEE 会员;主要从事微分方程与非线性动力系统方面的研究工作,先后在《Chaos》、《IEEE Trans. on Circuits and Systems II》等国内外重要学术期刊上发表文章70余篇,其中被SCI收录50余篇。主持国家自然科学基金2项、省部级项目多项,获得重庆市自然科学二等奖、安徽省自然科学二等奖各1项。