报告题目:Green's function estimate and localization transition for higher-dimensional quasi-periodic operators
报告人:石云峰,四川大学
报告时间:2022年5月26日,周四下午 15: 00-16: 00
报告地点:腾讯会议(949 882 483)
报告摘要:In this talk we will introduce the celebrated Green's function estimate method mainly developed by Bourgain.、 This method combines multi-scale analysis (FrohlichSpencer), subharmonic function estimates (Cartan) and semi-algebraic geometry arguments
(GromovYomdin) . As applications of this method, we also review some recent results about localization transition for
higher-dimensional quasi-periodic operators.
报告人简介:石云峰,四川大学数学学院副研究员。研究方向是数学物理(随机薛定谔算子、拟周期薛定谔算子以及具有遍历位势非线性薛定谔方程的安德森局域化非局域化相变理论)及动力系统(哈密顿系统KAM理论),已在 CMP,GAFA,JAM,JSP,JDE等数学期刊发表论文十余篇。