逼近组合优化系列报告
报告题目:Congruences for modular forms and applications to crank functions
报告人:张文静 博士
报告时间:2022年5月27日(周五)10:30-11:30
腾讯会议:867 944 069
摘要:In this talk, motivated by the work of Mahlburg, we find congruences for a large class of modular forms.
Moreover, we generalize the generating function of the Andrews-Garvan-Dyson crank on partition and establish several new infinite families of congruences. We also give several noteworthy
examples of crank functions, including the crank of $k$-colored partitions. This work is joint with Hao Zhang.
报告人简介:张文静,湖南大学数学学院讲师,2019年博士毕业于天津大学应用数学中心,师从陈永川教授,主要研究组合数学、特殊函数与整数分拆,论文发表在Proc. Amer. Math. Soc. ,Adv. in Appl. Math.,J. Number Theory等国际期刊。主持国家青年基金一项。