孙宪波
姓名: 孙宪波
职称: 教授
邮箱: xsun@hznu.edu.cn
教学与课程:
课程:常微分方程、概率论与数理统计、动力系统基础、分支理论
研究方向:微分方程与动力系统及应用,弱化Hilbert第十六问题
毕业于Western University,获博士学位;博士生导师;任美国数学评论评论员 (MR106688);德国数学文摘评论员(19245);解决了含退化奇点四次超椭圆哈密顿系统Abel积分零点个数精确上界等若干问题。主持国家自然科学基金4项,主持省级自然科学基金项目3项,市级人才项目1项。
主持的国家自然科学基金项目:
1. 三次退化哈密顿系统的多项式扰动问题(12471157),2025.01-2028.12
2. 几类光滑和非光滑扰动Hamiltonian系统的周期环域环性数和Hopf环性数(12001121),2021.01-2023.12
3. 几类扰动可积系统的Abel积分零点个数和分支图及其应用(11861009),2019.01-2022.12
4. 若干平面可积系统扰动分支及其应用(11461001),2015.01-2018.12
部分论文:
[1] Homoclinic bifurcation near a loop tangent to an invariant line, Journal of Differential Equations, 425 (2025) 157-189. (with Y. Tian, M. Han)
[2] Small-amplitude periodic solutions in the polynomial jerk equation of arbitrary degree, Physica D: Nonlinear Phenomena, (2025, accepted) (with Jaume Llibre)
[2] Cyclicity of periodic annulus and Hopf cyclicity in perturbing a hyper-elliptic Hamiltonian system with a degenerate heteroclinic loop, Journal of Differential Equations 269 (2020), 9224-9253. (with P. Yu)
[3] Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4, Journal of Differential Equations 267 (2019), 7369-7384. (with P. Yu)
[4] Single peak solitary wave solutions for the CH-KP(2,1) equation under boundary condition , Journal of Differential Equations 259 (2015), 628-641. (with M. Wei, S. Tang)
[5] The monotonicity of ratios of some Abelian integrals, Bulletin Des Sciences Mathematiques 166(2021), 102934. (with N. Wang, P. Yu)
[6] Bounding the number of limit cycles for a polynomial Lienard system by using regular chains, Journal of Symbolic Computation, 79 (2017), 197-210. (with W. Huang)
[7] Parameter Identification on Abelian Integrals to Achieve Chebysheve Proterty, Discrete and Continuous Dynamical System B 26 (2021), 5661-5679. (with . Z. Chen, P. Yu)
[8] Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms, Discrete and Continuous Dynamical System B, 24 (2019), 965-987. (with P. Yu)
[9] Coexistence of the solitary and periodic waves in convecting shallow water fluid, Nonlinear Analysis: Real World Application 53 (2020), 103067. (with J. Cai, W. Huang)
[10] 一类扰动超椭圆Hamilton系统的Abel积分零点个数上确界,《中国科学:数学》, 45 (2015), 751-764. (与吴奎霖)