王金华
姓名:王金华
职称:教授
邮箱:wangjh@hznu.edu.cn
教学与课程:
本科生课程:高等数学,线性代数,高等代数,概率统计,最优化算法与应用,运筹学
研究生课程:凸分析
学术交流:
2019-2至2019-4, 香港理工大学, 数学系, 访问学者
2018-7至2018-8, 台湾中山大学, 理学院数学系, 访问学者
2017-7至2017-8, 台湾中山大学, 理学院数学系, 访问学者
2016-7至2016-8, 台湾中山大学, 理学院数学系, 访问学者
2015-7至2015-8, 台湾中山大学, 理学院数学系, 访问学者
2013-7至2013-8, 台湾中山大学, 理学院数学系, 访问学者
2012-7至2012-8, 台湾中山大学, 理学院数学系, 访问学者
2011-2至2011-9, 澳大利亚新南威尔士大学, 数学系, 研究员
2009-7至2009-8, 西班牙Sevilla大学, 数学系, 访问学者
2007-2至2007-3, 法国Paul Sabatier大学, 数学系, 访问学者
2008-2至2009-2, 台湾中山大学, 博士后,
学术研究(模板):
主持的科研项目:
国家自然科学基金面上项目,黎曼流形上若干最优化方法及理论的研究,2018/01-2021/12,在研,主持。
国家自然科学基金面上项目,黎曼流形和李群上基于回拉的Newton 类算法的研究及其应用,2014/01-2017/12,已结题,主持。
国家自然科学基金青年基金项目, 流形上收敛性问题的研究,2011/01-2013/12, 已结题,主持
浙江省自然科学基金面上项目, 矩阵流形上的Newton类算法,2013/01-2015/12,已结题, 主持
浙江省自然科学基金面上项目,黎曼流形上若干优化问题的研究,2017/01-2019/12,已结题, 主持
发表的代表性著作:
J. H. Wang, X. M. Wang, C. Li, J.-C. Yao, Convergence analysis of gradient algorithms on Riemannian manifolds without curvature constraints and application to Riemannian mass, SIAM J. Optim., 2021, 31(1), 172-199.
J. H. Wang, C. Li, W. P. Shen, Extended Newton-type method for inverse singular value problems with multiple and/or zero singular values, Inverse Problems 36 (2020) 095003 (29pp)
X. Li, D. Wu, C. Li, Jinhua Wang, J.-C. Yao, Sparse recovery via nonconvex regularized M-estimators over l_q-balls, Computational Statistics \& Data Analysis, 152(2020) 107047
J. H. Wang,Y. H. Hu, C. K. W. Yu, C. Li, X. Q. Yang, Extended Newton methods for multiobjective optimization: Majorizing function technique and convergence analysis, SIAM J. Optim, 2019, 29(3): 2388-2421 (中科院1区)
J. Bao, C. K. W. Yu, J. H. Wang, Y. Hu, J.-C. Yao, Modified inexact Levenberg-Marquardt methods for solving nonlinear least squares problems, Compt. Optim. Appl, 2019, 74: 547-582, (通讯作者) (中科院2区)
J. H. Wang, Y. H. Hu, C. K. W. Yu, X. J. Zhuang, A Family of Projection Gradient Methods for Solving the Multiple-Sets Split Feasibility Problem, J. Optim. Theory Appl., 2019, 183: 520-534(中科院2区)
Y. Zhan, Y. Hu, C. K. W. Yu, J. H. Wang, Cubic convergence of Newton-Steffensen's method for operators with Lipschitz continuous derivative, J. Nonlinear Convex Anal., 2018, 19(3): 433-460.
L. Zhang, Y. Hu, C. K. W. Yu, J. H. Wang, Iterative positive thresholding algorithm for nonnegative sparse optimization, Optim.,2018, 67(9): 1345-1363.
J. H. Wang, Y. H. Hu, C. Li J.-C. Yao, Linear convergence of CQ algorithms and applications in gene regulatory network inference, Inverse Problems, 2017, 33: 055017 (25pp). (中科院2区)
J. H. Wang, C. Li, G. Lopez, J.-C. Yao, Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination, SIAM J. Optim, 2016, 26 (4): 2696-2729. (中科院1区)
X.Wang, C. Li, J. H.Wang, J.-C. Yao, Linear Convergence of Subgradient Algorithm for Convex Feasibility on Riemannian Manifolds, SIAM J. Optim, 2015, 25(4): 2334-2358. (通讯作者) (中科院1区)
J. H. Wang, Convergence ball of Newton’s method for generalized equations and uniqueness of the solution, J. Nonlinear Convex Anal., 2015, 16(9): 1847-1859
B. Dali, C. Li, J. H. Wang, Local convergence of Newtons method on the Heisenberg group, J Comput Appl Math, 2016, 300: 217-232. (通讯作者) (中科院2区)
J. H. Wang, C. Li, G. Lopez, J.-C. Yao, Convergence analysis of inexact proximal point algorithms on Hadamard manifolds, J Global Optim, 2015, 61: 553-573 (中科院2区)
J. H.Wang, C. Li, J.-C. Yao, Finite termination of inexact proximal point algorithms in Hilbert spaces, J. Optim. Theory. Appl., 2015, 166: 188-212. (中科院2区)
V. Jeyakumary G. Y. Li, Boris S. Mordukhovich and J. H. Wang, Robust Best Approximation with Interpolation Constraints under Ellipsoidal Uncertainty: Strong Duality and Nonsmooth Newton Methods, Nonlinear Anal. 2013, 81: 1-11.
J. H. Wang, J. C. Yao and C. Li, Gauss-Newton methods for convex composite optimization on Riemannian manifolds, J Global Optim, 2012, 53: 5-28. (中科院2区)
V. Jeyakumar, J.H. Wang, G. Li Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty, J. Math. Anal. Appl. 2012, 393: 285-297.
C. Li, B.S. Mordukhovich, J. H. Wang and J.C. Yao, Weak sharp minima on Riemannia manifolds, SIAM J. Optim, 2011, 21(4): 1523-1560. (中科院1区)
G. Lopez, V. Martin-Marquez, C. Li and J. H. Wang, Nonexpansive Mappings and Resolvents of Monotone Vector Fields on Hadamard Manifolds, Set-Valued and Variational Analysis, 2011, 19: 361-383,
J. H. Wang and G. Lopez, Modified proximal point algorithms on Hadamard manifolds, Optim, 2011, 60(6): 697-708.
J. H. Wang and C. Li, Newton’s method on Lie groups with applications to optimization, IMA J Numer Anal, 2011, 31: 322-347. (中科院2区)
J. H. Wang, Convergence of Newton’s Method for Sections on Riemannian Manifolds,J. Optim. Theory. Appl., 2011, 148(1): 125-145 (中科院2区)
J. H.Wang, G. Lopez, V. Martin-Marquez and C. Li, Monotone and accretive vector fields on Riemannian manifolds, J. Optim. Theory. Appl., 2010, 146: 691-708. (中科院2区)
J. H. Wang, Convergence coriterion of the family of Euler-Halley type methods for sections on Riemannian manifolds, Taiwanese J. Math. 2010, 14(6): 2181-2201.
J. H. Wang, C.Li and H. K. Xu, Subdifferentials of perturbed distance functions in Banach spaces, J Global Optim. 2010, 46: 489-501. (中科院2区)
C. Li, N. Chun and J. H. Wang, Convergence behavior of Gauss-Newton’s method and extensions of the Smale point estimate theory, J of Complexity, 2010, 26: 268-295.
C. Li, J. H. Wang and J. P. Dedieu, Newton’s Method on Lie groups: Smale’s point estimate theory under the -condition, J of Complexity, 2009, 25: 128-151.
C. Li and J. H. Wang, Newton’s Method for Sections on Riemannian Manifolds: Generalized Covariant _-Theory, J of Complexity, 2008, 24: 423-451.
C. Li and J. H. Wang, Newton’s method on Riemannian manifolds: Smale’s pointestimatetheory under the -condition, IMA J Numer Anal, 2006, 26: 228-251.(中科院2区)
J. H.Wang and C. Li, Uniqueness of the singular point of vector field on Riemannian manifold under the -condition, J of Complexity, 2006, 22: 533-548.
C. Li and J. H. Wang, Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian Manifolds, Science in China, 2005, 48: 1465-1478.