学术科研

学术科研

当前位置 :  首页 > 学术科研

陈建功大讲堂:(Lie-)Butcher groups, post-groups and the Yang-Baxter equation

来源 : 数学学院     作者 : 谢雪     浏览量:42     时间 : 2022-09-15

陈建功大讲堂——代数讲坛(2022-11)

报告题目(Lie-)Butcher groups, post-groups and the Yang-Baxter equation

报告人:唐荣

报告时间922 1000-1100

报告地点:腾讯会议:446 544 147


报告摘要In this talk, first we introduce the notion of a post-group, which is an integral object of a post-Lie algebra. Then we find post-group structures on Butcher group and $\huaP$-group of an operad $\huaP$. Next we show that a relative Rota-Baxter operator on a group naturally split the group structure to a post-group structure. Conversely, a post-group gives rise to a relative Rota-Baxter operator on the subadjacent group. We prove that a post-group gives a braided group and a solution of the Yang-Baxter equation. Moreover, we obtain that the category of post-groups is isomorphic to the category of braided groups and the category of skew-left braces. What's more, we give the definition of a post-Lie group and show that there is a post-Lie algebra structure on the vector space of left invariant vector fields, which verifies that post-Lie groups are the integral objects of post-Lie algebras. Finally, we utilize the post-Hopf algebras and post-Lie Magnus expansion to study the formal integration of post-Lie algebras.

报告人简介:唐荣,吉林大学讲师。从事Rota-Baxter代数和Yang-Baxter方程的研究。在Communications in Mathematical PhysicsJournal of the Institute of Mathematics of Jussieu, Journal of Noncommutative GeometryJournal of AlgebraSCI杂志上发表论文近20篇。



联系我们

地址:浙江省杭州市余杭塘路2318号勤园23号楼 
电话:0571-28867633 邮编:311121
版权所有 © 2021 杭州师范大学数学学院 
公安备案号:33011002011919  浙ICP备11056902号-1